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Microglial Reactivity Correlates with
Presynaptic Loss Independent

of β-Amyloid and Tau
Guoyu Lan, PhD,1,2 Xuhui Chen, MD,3 Jie Yang, Msc,1 Pan Sun, PhD,1,2 Yue Cai, PhD,1

Anqi Li, Msc,1 Yalin Zhu, Bsc,1 Zhen Liu, PhD,1 Shaohua Ma, PhD,2 and

Tengfei Guo, PhD, 1,4 for the Alzheimer’s Disease Neuroimaging Initiative

Objective: Triggering receptor expressed on myeloid cells-2 (TREM2) and progranulin (PGRN) are critical regulators of
microglia activation and can be detected in cerebrospinal fluid (CSF). However, whether microglial reactivity is detri-
mental or neuroprotective for Alzheimer disease (AD) is still debatable.
Methods: We identified 663 participants with baseline β-amyloid (Aβ) positron emission tomography (PET) and CSF
biomarker data, including phosphorylated tau181 (p-Tau181), soluble TREM2 (sTREM2), PGRN, and growth-associated
protein-43 (GAP-43). Among them, 254 participants had concurrent longitudinal CSF biomarkers. We used multivariate
regression analysis to study the associations of CSF microglial biomarkers with Aβ PET, CSF p-Tau181, and CSF GAP-43
cross-sectionally and longitudinally. A Chinese aging cohort’s independent CSF samples (n = 65) were analyzed as a
validation.
Results: Higher baseline levels of CSF microglial biomarkers were related to faster rates of CSF sTREM2 increase and
CSF PGRN decrease. Elevated CSF p-Tau181 was associated with higher levels of CSF microglial biomarkers and faster
rates of CSF sTREM2 increase and CSF PGRN decrease. In both cohorts, higher Aβ burden was associated with attenu-
ated CSF p-Tau181 effects on CSF microglial biomarker increases. Independent of Aβ PET and CSF p-Tau181 patholo-
gies, higher levels of CSF sTREM2 but not CSF PGRN were related to elevated CSF GAP-43 levels and faster rates of
CSF GAP-43 increase.
Interpretation: These findings suggest that higher Aβ burden may attenuate the p-Tau-associated microglial
responses, and TREM2-related microglial reactivity may independently correlate with GAP-43-related presynaptic loss.
This study highlights the two-edged role of microglial reactivity in AD and other neurodegenerative diseases.

ANN NEUROL 2024;00:1–12

Alzheimer disease (AD) is characterized by the accumu-
lation of β-amyloid (Aβ) plaques and neurofibrillary

tau tangles concurrent with progressive neuronal and synap-
tic loss strongly correlated with cognitive decline.1–3

Although the underlying mechanism linked to synaptic loss
is not well established, microglial-mediated phagocytosis

and neuroinflammation in the brain, which are now
acknowledged as central players in AD pathogenesis, may
contribute to synaptic degeneration beyond the syn-
aptotoxic effects of Aβ and tau.1,4,5 Triggering receptor
expressed on myeloid cells-2 (TREM2) and progranulin
(PGRN) are critical regulators of microglial activation,
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phagocytosis, and proliferation.6,7 Trem2 deficiency
prevented microglia-mediated synaptic removal by directly
inhibiting microglial phagocytosis, and Trem2 over-
expression conversely exacerbated synaptic impairment.8,9

Pgrn deficiency could also facilitate microglia-mediated syn-
aptic elimination through complement activation.6,10

Although the findings in animals are sufficiently investi-
gated, knowledge of the involvement of microglia in the
synaptic loss in humans of aging and AD is still limited.

Soluble TREM2 (sTREM2) and PGRN, primarily
shedding from microglia, can be detected in cerebrospi-
nal fluid (CSF). Thus, the CSF levels of sTREM2
and PGRN are considered markers of microglial TREM2
and PGRN signaling, reflecting the status of microglial
reactivity.11–13 This was supported by decreased CSF
and plasma levels of sTREM2 and PGRN in patients
with loss-of-function variants of Trem2 and Pgrn.14–16 In
mice carrying the Trem2 p.T66M missense mutation,
the generation of brain sTREM2 also apparently
decreased, accompanied by reduced activation and
phagocytosis of microglia.17 Previously, cross-sectional
studies demonstrated that patients with symptomatic AD
had elevated CSF sTREM2 and CSF PGRN in relation
to CSF levels of Aβ and phosphorylated tau (p-Tau),
indicating microglial immune responses to primary AD
pathologies.12,13,18 Accumulating evidence from human
and animal models showed that higher CSF sTREM2
and microglial activation were associated with reduced
Aβ and tau deposition.19–21 Elevated CSF sTREM2 was
also related to attenuated brain atrophy, glucose
hypometabolism, and cognitive decline.19,21–24 However,
one recent study reported the accelerated effects of CSF
sTREM2 and microglial activation on future tau deposi-
tion.25 Supporting this, CSF sTREM2 has also been
linked to Aβ-related tau aggregates.24,26 Together, the
roles of TREM2-dependent and PGRN-dependent
microglial reactivity in the course of AD remain
controversial.

Here, we investigated the associations of CSF micro-
glial biomarkers (sTREM2 and PGRN) with primary AD
pathologies and subsequent presynaptic loss using exten-
sive cross-sectional and longitudinal data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort and validated the primary analyses in an indepen-
dent aging cohort from China. The specific aims of this
study were to determine (1) how CSF microglial bio-
markers correlate with each other and their association
with primary AD pathologies and (2) how CSF microglial
biomarkers correlate with presynaptic biomarker growth-
associated protein-43 (GAP-43) in CSF. This study may
provide novel insights into understanding the association
of Aβ plaques, CSF p-Tau, and presynaptic loss with

microglial reactivity and have critical clinical implications
for the therapeutic strategies targeting microglia in neuro-
degenerative diseases.

Subjects and Methods
Participants
The data in this study were obtained from the ADNI database
(ida.loni.usc.edu). The ADNI was established in 2003 known as
a public–private partnership, led by principal investigator
Michael W. Weiner, MD. The main objective of ADNI is to
determine whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessments can be combined
to track the progression of mild cognitive impairment (MCI)
and early AD. The ADNI study was approved by institutional
review boards of all participating centers, and written informed
consent was obtained from all participants or their authorized
representatives.

We identified 663 participants in this study, including
202 cognitively unimpaired (CU), 350 with MCI, and 110 with
dementia. All participants had simultaneous (within 1 year) base-
line 18F-florbetapir (FBP) Aβ PET and CSF biomarker data,
including p-Tau181, sTREM2, PGRN, and GAP-43. Among
them, 254 participants (77 CU, 166 MCI, and 11 dementia)
had concurrent longitudinal CSF biomarker data with at least
two measurements in a median (range) of 2.1 (1.3–6.0) years of
follow-up. Following clinical cognitive status at baseline, all par-
ticipants were divided into CU and cognitively impaired (CI;
including MCI and dementia).

Additionally, we collected 65 participants (8 CU,
21 MCI, 36 dementia) with CSF samples from the Greater-
Bay-Area Healthy Aging Brain Study (GHABS) in China
(ClinicalTrials.gov ID: NCT06183658) as a validation cohort.27

CSF Biomarker Measurements
In the ADNI cohort, CSF p-Tau181 was quantified using the
fully automated Roche Elecsys at the University of Pennsylva-
nia.28 CSF microglial biomarkers were measured using a Meso
Scale Discovery (MSD) platform-based assay (Haass group) at
Ludwig Maximilian University of Munich.13,18 CSF GAP-43
was measured by an in-house ELISA as previously described.29

Linear mixed effect (LME) models were used to calculate slopes
of CSF biomarkers for all the participants with longitudinal CSF
data, controlling for the following independent variables: time,
age, sex, and a random slope and intercept.

In the validation cohort, CSF Aβ42 and CSF p-Tau181
were quantified using the commercial Neurology 4-plex E kit
(cat: 103670; Quanterix, Lexington, MA) and Advantage V2.1
kit (cat: 104111, Quanterix) by the Simoa HD-X. CSF
sTREM2 was measured using an MSD platform-based assay
developed by the Haass group.13,18 CSF GAP-43 was detected
using the commercial Human GAP-43 ELISA Kit (cat:
abx250779, Abbexa, Cambridge, UK). All CSF biomarker mea-
surements were conducted at the Shenzhen Bay Laboratory.
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Amyloid PET and MRI
More details on FBP PET image and structural MRI acquisition
can be found online (http://adni-info.org). FBP PET data were
acquired in 4 � 5-minute frames from 50 to 70 minutes post-
injection. PET images were motion-corrected, time-averaged,
and summed into one static frame. Cortical FBP uptakes in
68 regions of interest defined by the Desikan–Killiany atlas30

in FreeSurfer (V7.1.1) were extracted from each FBP PET scan
that coregistered to individual corresponding structural MRI scan
(closest in time to FBP PET scan). A composite standardized
uptake value ratio (SUVR) was calculated by referring FBP
uptake in AD summarized cortical regions (including frontal,
cingulate, parietal, and temporal regions) to the mean uptake in
the whole cerebellum.31 The Aβ positivity was defined as AD
summarized cortical regions with SUVR ≥ 1.11.31

Statistical Analysis
Statistical analyses were performed using the statistical program
R (v4.1.1, R Foundation for Statistical Computing). Data in this
study are summarized as the number (%) or median (range). We
compared the demographics and clinical characteristics between
CU and CI participants using either a 2-tailed Mann–Whitney
U test or Fisher exact test with a significance threshold value of
p < 0.05. LME models were used to investigate the longitudinal
changes in CSF sTREM2 and CSF PGRN over time, and multi-
variable linear regression models were used to explore their asso-
ciation with each other cross-sectionally and longitudinally. Age,
sex, education, and APOE-ε4 status were included as covariates
for all the models in this study.

To investigate how Aβ and p-Tau pathologies affect the
TREM2-related and PGRN-related microglial reactivity, we used
baseline Aβ PET or CSF p-Tau181 as dependent variables,
and baseline or longitudinal CSF microglial biomarkers as inde-
pendent variables in multivariate linear regression models. We
also tested the interaction effect between Aβ PET and CSF
p-Tau181 on CSF microglial biomarkers, as shown in the
following equation:

CSFmicroglial biomarkers
�AβPET�CSFp�Tau181þcovariates ð1Þ

Subsequently, we performed mediation analyses (R;
Lavaan package) to determine further the association of Aβ PET,
CSF p-Tau181, and CSF microglial biomarkers.

Another major aim of this study was to assess the
direct effects of TREM2-related and PGRN-related microglial
responses on presynaptic loss. To this end, we explored the asso-
ciation of CSF microglial biomarkers with CSF GAP-43 cross-
sectionally and longitudinally. To investigate the independent
effect of CSF microglial biomarkers, the main effects of Aβ PET
and CSF p-Tau181 were further adjusted in our models. We also
tested the interaction effect between Aβ PET and CSF microglial
biomarkers on CSF GAP-43. The equation for the interaction is
as follows:

CSFGAP�43�CSFmicroglial biomarkers
�AβPETþCSFp�Tau181
þcovariates ð2Þ

To determine whether our findings were driven by clinical
impairment or the presence of abnormal amyloid plaques, we
repeated all analyses when restricting the models to CU, CI, or
Aβ+ participants only.

Results
Table 1 summarizes all participants’ baseline demo-
graphics, CSF biomarker levels, and Aβ PET stratified by
cognitive status. The CU and CI subgroups significantly
differed in sex, duration of education, and prevalence of
APOE-ε4 carriers but not in age. Longitudinal data
of CSF biomarkers are also displayed in Table 1. The
demographics of the validation cohort are shown in Sup-
plementary Table S1.

Longitudinal Changes in CSF Microglial
Biomarkers
Overall, CSF sTREM2 showed significant increases (stan-
dard β [βstd] = 273, 95% confidence interval [ci] = 214–
333, p < 0.001) over time, in contrast to the slight
decreases in CSF PGRN (βstd = �13.3, 95% ci = �26.3
to �0.3, p = 0.045). Higher baseline levels of CSF
microglial biomarkers were associated with faster rates
of increase in CSF sTREM2 (sTREM2: βstd = 0.81,
95% ci = 0.73–0.90, p < 0.001; PGRN: βstd = 0.24,
95% ci = 0.12–0.37, p < 0.001) but with faster rates of
decrease in CSF PGRN (sTREM2: βstd = �0.25, 95% ci
= �0.37 to �0.12, p < 0.001; PGRN: βstd = �0.93,
95% ci = �0.98 to �0.89, p < 0.001). Furthermore,
higher CSF sTREM2 was associated with elevated CSF
PGRN at baseline (βstd = 0.34, 95% ci = 0.26–0.41,
p < 0.001), but faster rates of increase in CSF sTREM2
were related to more rapid decrease in CSF PGRN over
time (βstd = �0.21, 95% ci = �0.33 to �0.08,
p < 0.001). Congruent results were obtained on testing in
CU, CI, and Aβ+ participants (Supplementary Table S2).

Aβ Plaques Attenuate CSF p-Tau181-Associated
CSF Microglial Biomarker Increases
Across all participants, elevated CSF p-Tau181 was associ-
ated with higher baseline levels of CSF sTREM2
(βstd = 0.42, 95% ci = 0.35–0.50, p < 0.001) and CSF
PGRN (βstd = 0.25, 95% ci = 0.17–0.33, p < 0.001) as
well as faster rates of increase in CSF sTREM2
(βstd = 0.41, 95% ci = 0.29–0.53, p < 0.001) and
decrease in CSF PGRN (βstd = �0.17, 95% ci = �0.30
to �0.04, p = 0.012; Fig 1). The associations with CSF
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p-Tau181 remained significant even controlling for the
main effect of Aβ PET. In contrast, augmented Aβ PET
was associated with lower baseline levels of CSF sTREM2
(βstd = �0.20, 95% ci = �0.28 to �0.11, p < 0.001)
and CSF PGRN (βstd = �0.16, 95% ci = �0.26 to
�0.07, p < 0.001) but not with slopes of CSF microglial
biomarkers after accounting for CSF p-Tau181. When the
models were restricted to CU, CI, or Aβ+ participants,
the same results were yielded for the associations with
CSF p-Tau181 (Supplementary Table S3). The associa-
tions with Aβ PET at baseline were retained in CU and
CI participants but marginally in Aβ+ participants. In
addition, there was an association between higher Aβ PET
and faster rates of increase in CSF PGRN in CU
participants.

Moreover, we found an interaction effect between
Aβ PET and CSF p-Tau181 on CSF microglial biomarkers
across all participants (see Fig 1), in which higher Aβ PET
was related to attenuated associations of higher CSF
p-Tau181 with greater baseline levels of CSF microglial
biomarkers and faster rates of increase in CSF sTREM2.
We also noticed a marginal interaction on the slope of

CSF PGRN. Only CI participants retained the interaction
on baseline CSF sTREM2 when on testing in different
subgroups (Supplementary Table S4). The mediation ana-
lyses further showed that CSF p-Tau181 mediated the
associations between Aβ PET and CSF microglial bio-
markers in the whole cohort (Fig 2). The direct effects of
Aβ PET on CSF microglial biomarkers were opposite
from the indirect effect mediated by CSF p-Tau181, lead-
ing to the totally disappeared impact of Aβ PET. Media-
tion analyses generally yielded similar results in CU, CI,
and Aβ+ participants (Supplementary Fig S1).

CSF sTREM2 Levels Correlate with CSF GAP-43
Independent of Aβ PET and CSF p-Tau181
In the primary analyses, higher baseline levels of CSF
microglial biomarkers were associated with the more pre-
synaptic loss measured by greater CSF GAP-43 levels
(sTREM2: βstd = 0.38, 95% ci = 0.31–0.45, p < 0.001;
PGRN: βstd = 0.22, 95% ci = 0.15–0.30, p < 0.001) and
faster rates of increase in CSF GAP-43 (sTREM2:
βstd = 0.37, 95% ci = 0.26–0.49, p < 0.001; PGRN:
βstd = 0.19, 95% ci = 0.07–0.32, p = 0.002; Fig 3).

TABLE 1. Demographics and Characteristics of Participants

Characteristics at Baseline All, n = 663 CU, n = 202 CI, n = 461

Age, yr 72.4 (55.2–91.5) 72.6 (56.4–86.0) 72.4 (55.2–91.5)

Female 299 (45%) 106 (52%) 193 (42%)

APOE-ε4 carrier 308 (46%) 57 (28%) 251 (54%)

Education, yr 16 (8–20) 16 (8–20) 16 (9–20)

Aβ PET, SUVR 1.15 (0.84–2.00) 1.05 (0.84–2.00) 1.26 (0.84–2.00)

CSF biomarkers

p-Tau181, pg/ml 23.3 (8.0–97.0) 19.1 (8.0–60.1) 25.4 (8.2–97.0)

sTREM2, pg/ml 3,421 (504–12,012) 3,514 (504–12,012) 3,391 (518–11,714)

PGRN, pg/ml 1,524 (538–3,664) 1,519 (538–2,806) 1,534 (654–3,664)

GAP-43, pg/ml 4,614 (1,088–19,971) 4,306 (1,167–17,927) 4,724 (1,088–19,971)

Longitudinal CSF biomarkers n = 254 n = 77 n = 177

Visits of microglial biomarkers 2 (2–3) 2 (2–3) 2 (2–3)

Duration of microglial biomarkers, yr 2.1 (1.4–5.1) 2.1 (1.4–4.4) 2.0 (1.7–5.1)

Visits of GAP-43 2 (2–4) 2 (2–3) 2 (2–4)

Duration of GAP-43, yr 2.1 (1.3–6.0) 2.2 (1.3–5.0) 2.1 (1.7–6.0)

Data are presented as median (range) or n (%).
APOE = apolipoprotein E; Aβ = β-amyloid; CI = cognitively impaired; CSF = cerebrospinal fluid; CU = cognitively unimpaired; GAP-
43 = growth-associated protein-43; PET = positron emission tomography; PGRN = progranulin; p-Tau181 = phosphorylated tau181;
sTREM2 = soluble triggering receptor expressed on myeloid cells-2; SUVR = standard uptake value ratio.
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Augmented rates of increase in CSF sTREM2 and
decrease in CSF PGRN were also related to faster rates of
increase in CSF GAP-43 (sTREM2: βstd = 0.37, 95%
ci = 0.26–0.48, p < 0.001; PGRN: βstd = �0.16, 95% ci
= �0.28 to �0.03, p = 0.012). After controlling for Aβ
PET and CSF p-Tau181, the associations between CSF
sTREM2 and CSF GAP-43 were preserved in the whole

cohort and partially in CI and Aβ+ participants (Table 2
and Supplementary Table S5). In contrast, no association
was obtained for CSF PGRN when adjusting for Aβ PET
and CSF p-Tau181. These findings suggest that CSF
sTREM2 rather than CSF PGRN correlates with GAP-
43-related presynaptic loss, independent of Aβ PET and
CSF p-Tau181.

FIGURE 1: Association of cerebrospinal fluid (CSF) microglial biomarkers with CSF phosphorylated tau181 (p-Tau181). Association
of baseline CSF p-Tau181 with baseline and longitudinal CSF soluble triggering receptor expressed on myeloid cells-2
(sTREM2; A, B) and CSF progranulin (PGRN; C, D) is shown. The dash and solid lines represent each group’s regression lines. The
baseline β-amyloid (Aβ) positron emission tomography (PET) � CSF p-Tau181 interaction effect was computed. The presented
p values were calculated using generalized linear models across all participants, controlling for age, sex, education, and APOE-ε4
status. SUVR = standardized uptake value ratio; βstd = standard β.
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Subsequently, we further determined whether Aβ
pathology modulates the associations between CSF micro-
glial biomarkers and CSF GAP-43. Across all participants,
Aβ PET had a significant interaction with CSF sTREM2
on longitudinal CSF GAP-43 (see Table 2). This showed
that individuals with high levels of Aβ PET had associations
of greater baseline levels and longitudinal increases in CSF
sTREM2 with faster rates of increase in CSF GAP-43
(baseline: βstd = 0.13, 95% ci = �0.01 to 0.27; slopes:
βstd = 0.14, 95% ci = 0.01–0.27). Conversely, individuals
with low levels of Aβ PET had associations of greater base-
line levels and longitudinal increases in CSF sTREM2 with

slower rates of increase in CSF GAP-43 (baseline:
βstd = �0.14, 95% ci = �0.28 to 0.004; slopes:
βstd = �0.12, 95% ci = �0.25 to 0.01). The interactions
with CSF sTREM2 were sustained in Aβ+ participants
and partially in CU participants cross-sectionally and longi-
tudinally (Supplementary Table S6). In addition, Aβ PET
showed an interaction with CSF PGRN on CSF GAP-43
at baseline across all participants, in which higher Aβ PET
was related to attenuated correlation between elevated levels
of CSF PGRN and CSF GAP-43 (PGRN � Aβ PET
interaction: βstd = �0.06, 95% ci = �0.11 to �0.01,
p = 0.027) and remained significant in Aβ+ participants.

FIGURE 2: Mediation analysis of β-amyloid (Aβ) positron emission tomography (PET), CSF phosphorylated tau181 (p-Tau181), and
cerebrospinal fluid (CSF) microglial biomarkers. Baseline CSF p-Tau181 mediated the association of baseline Aβ PET with baseline
CSF soluble triggering receptor expressed on myeloid cells-2 (sTREM2) and CSF progranulin (PGRN; A) as well as slopes of CSF
sTREM2 and CSF PGRN (B). The solid and the dashed lines show the significant and nonsignificant pathways, respectively. Total,
direct, and indirect associations were computed by a 5,000-bootstrap procedure, controlling for age, sex, education, and APOE-
ε4 status. ci = confidence interval.

6 Volume 00, No. 0

ANNALS of Neurology
 15318249, 0, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ana.26885 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Association of CSF sTREM2 with Aβ, p-Tau, and
Presynaptic Loss in the Validation Cohort
In the independent CSF samples (n = 65) obtained from
the GHABS cohort, higher levels of both CSF Aβ42 and
CSF p-Tau181 were marginally associated with higher CSF

sTREM2 levels (Aβ: βstd = 0.22, 95% ci = �0.01 to
0.46, p = 0.065; p-Tau: βstd = 0.22, 95% ci = �0.02
to 0.45, p = 0.072) when we conducted multivariate ana-
lyses with CSF Aβ42 and CSF p-Tau181 as predictors in
one model adjusted for age and sex. Similar to the ADNI

FIGURE 3: Association of cerebrospinal fluid (CSF) growth-associated protein-43 (GAP-43) with CSF microglial biomarkers. (A–D)
Association of baseline and longitudinal CSF GAP-43 with baseline CSF soluble triggering receptor expressed on myeloid cells-2
(sTREM2; A, C) and CSF progranulin (PGRN; B, D). (E, F) Association of longitudinal CSF GAP-43 with longitudinal CSF sTREM2
(E) and CSF PGRN (F). The points (blue, cognitively unimpaired; red, cognitively impaired) and solid lines represent the
individuals and regression lines, respectively. The presented p values were computed using generalized linear models across all
participants, controlling for age, sex, education, and APOE-ε4 status.
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cohort, there was an interaction between CSF Aβ42 and
CSF p-Tau181 on CSF sTREM2, in which lower CSF
Aβ42 was related to attenuated association of
CSF p-Tau181 with CSF sTREM2 (Fig 4A). Mediation
analysis also showed a marginally direct effect of CSF
Aβ42 on CSF sTREM2 opposite from the indirect effect
mediated by CSF p-Tau181 (Supplementary Fig S2).

Similar to the ADNI cohort, higher CSF sTREM2
was related to elevated CSF GAP-43 (βstd = 0.37, 95%
ci = 0.15–0.59, p = 0.001; see Fig 4B) adjusted for age
and sex. The association remained significant after control-
ling for CSF Aβ42 and CSF p-Tau181 (βstd = 0.45, 95%
ci = 0.23–0.67, p < 0.001). No interaction effect on
GAP-43 was obtained, which may be because most of the

TABLE 2. Interaction between CSF Microglial Biomarkers and Aβ PET on CSF GAP-43

Main Effect Aβ PET Interaction

βstd (95% ci) p βstd (95% ci) p

Baseline CSF GAP-43

Baseline CSF sTREM2 0.08 (0.02 to 0.14) 0.005 0.05 (�0.01 to 0.10) 0.079

Baseline CSF PGRN 0.05 (�0.01 to 0.10) 0.094 �0.06 (�0.11 to �0.01) 0.027

Slope of CSF GAP-43

Baseline CSF sTREM2 0.10 (0.01 to 0.20) 0.036 0.11 (0.03 to 0.19) 0.007

Baseline CSF PGRN 0.05 (�0.03 to 0.14) 0.229 �0.03 (�0.11 to 0.05) 0.483

Slope of CSF sTREM2 0.11 (0.02 to 0.20) 0.016 0.10 (0.02 to 0.19) 0.011

Slope of CSF PGRN �0.04 (�0.12 to 0.05) 0.390 0.04 (�0.04 to 0.12) 0.311

The bold p values refer to significant effect.
Aβ = β-amyloid; ci = confidence interval; CSF = cerebrospinal fluid; GAP-43 = growth-associated protein-43; PET = positron emission tomography;
PGRN = progranulin; sTREM2: soluble triggering receptor expressed on myeloid cells-2.

FIGURE 4: Association of cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cells-2 (sTREM2) with CSF
phosphorylated tau181 (p-Tau181) and CSF growth-associated protein-43 (GAP-43). Association of CSF sTREM2 with CSF
p-Tau181 (A) and CSF GAP-43 (B) at baseline in the validation cohort is shown. The points and solid lines represent each group’s
individuals and regression lines. The baseline CSF Aβ42 � CSF p-Tau181 interaction effect was computed. The presented p values
were calculated using generalized linear models across all participants, controlling for age and sex.
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participants were CI (88%) in the validation cohort.
The limitation of sample sizes did not allow meaningful
analyses among different subgroups.

Discussion
In this study, we showed that elevated CSF p-Tau181 was
related to higher CSF microglial biomarkers. The effect size
of p-Tau181-associated CSF microglial biomarker increases
was attenuated by higher Aβ burden. Furthermore, media-
tion analyses showed that the direct effects of Aβ PET on
CSF microglial biomarkers were opposite from the indirect
effect mediated by CSF p-Tau181. Independent of Aβ PET
and CSF p-Tau181, higher CSF sTREM2 but not CSF
PGRN was associated with elevated CSF GAP-43 and
faster rates of CSF GAP-43 increase. Given that CSF
sTREM2 and CSF PGRN may reflect expression levels of
TREM2-dependent and PGRN-dependent signaling in
microglia,11,13 these findings provide novel insights into
TREM2-related and PGRN-related microglial responses to
primary AD pathologies and modulation on subsequent
presynaptic loss (Fig 5).

Several preclinical studies in genetic knockout mice
reported that Trem2 deficiency locked microglia in a
homoeostatic signature, whereas Pgrn deficiency led to
microglial hyperactivation,7,15,32 indicating that TREM2
and PGRN may participate in triggering and restricting

microglial activation, respectively. This was favored by the
finding that TPSO PET signals assessing microglial activa-
tion decreased in Trem2-deficient mice but increased in
Pgrn-deficient mice,15 and loss of TREM2 function could
suppress microglial hyperactivation and phagocytosis in
Pgrn-deficient mice.7 We and colleagues21 found signifi-
cant longitudinal increases in CSF sTREM2 over time.
Intriguingly, we first observed more rapid decreases in
CSF PGRN over time parallel with higher baseline levels
in this study. The opposite longitudinal changes corre-
spond with the different effects of TREM2 and PGRN
signaling in regulating microglial reactivity.7,15,32

Supporting this, we further noticed an association between
faster increases in CSF sTREM2 and decreases in CSF
PGRN. Given that both sTREM2 and PGRN expression
increased upon microglial activation,33–38 it is likely that
the earliest TREM2-related microglial responses to toxic
proteins are protective by simultaneously enhancing
PGRN-dependent signaling to suppress microglial hyper-
activation. In the later stage, excessive pathological bur-
dens disrupt the microglial homeostasis, eventually
reducing PGRN-dependent signaling and increasing detri-
mental cellular subtypes of microglia.

For Aβ pathology in the brain, early studies revealed
that different Aβ aggregates could induce glial activation,
but the smaller soluble Aβ oligomers showed a far the
smaller soluble Aβ oligomers induced microglia reactivity

FIGURE 5: Interlinking schematic among β-amyloid (Aβ), phosphorylated tau (p-Tau), microglial reactivity, and presynaptic loss.
The findings in the current study suggest that early p-Tau pathology may trigger triggering receptor expressed on myeloid
cells-2 (TREM2)-dependent and progranulin (PGRN)-dependent microglial reactivity, which is attenuated by higher Aβ pathology.
In addition, TREM2-dependent microglial reactivity may independently correlate to growth-associated protein-43 (GAP-43)-
related presynaptic loss.
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and neurotoxicity far more than other Aβ species.1,39 In
return, reactive microglia was found to protect against Aβ
pathology in amyloidosis mice, especially in the early Aβ
seeding stage in a TREM2-dependent manner.40–43

Supporting this, two longitudinal studies in sporadic and
familial AD reported the association of increased CSF
sTREM2 with slower Aβ accumulation.20,21 In line with
our findings, two observational studies reported that indi-
viduals with evidence of Aβ pathology only had decreased
CSF sTREM2 levels in preclinical and symptomatic
AD.18,44 Similarly, trend-level decreases in CSF PGRN were
observed in preclinical AD with Aβ pathology only.13 It may
be explained by the formation of Aβ plaques sequestering
soluble Aβ oligomers,39 thereby limiting their potential to
induce microglial reactivity. An alternative explanation may
be that reactive microglia are recruited and form a barrier
around plaques; thereby, the sTREM2 and PGRN generated
from microglia are restricted within plaques.18,45 Regarding
tau-related pathology, we and others13,18,44 observed positive
associations between CSF p-Tau181 and CSF microglial bio-
markers at baseline. Our findings further showed that ele-
vated CSF p-Tau181 predicted longitudinal increases in CSF
sTREM2 and decreases in CSF PGRN over time. However,
another study in familial AD found no relationship between
CSF p-Tau181 and longitudinal CSF sTREM2 increases.21

The conflicting results could be explained by several factors,
including the differentiative TREM2-related microglial
responses to the pathophysiology between sporadic and
familial AD or the larger sample sizes and greater age in the
current study. Age-related increases in CSF sTREM2 and
activated microglia were characterized in both human brains
and mouse models,46–48 implying more susceptible microglia
responding to brain pathology in older adults. Intriguingly,
the p-Tau effect on CSF microglial biomarker increases was
suppressed by higher Aβ deposition in this study. Mediation
analyses further demonstrated the opposite associations of Aβ
PET and CSF p-Tau181 with changes in CSF microglial bio-
markers. Similar results for CSF sTREM2 were yielded using
CSF Aβ42 as a predictor instead of Aβ PET in the validation
cohort. These results suggest that Aβ PET and CSF p-Tau
pathologies have opposite relationships with the levels of
microglial TREM2 and PGRN signaling measured by CSF
microglial biomarkers.

Growing evidence supports the role of microglia in
synaptic elimination during aging and AD. One postmor-
tem study49 demonstrated that microglial processes
contained synaptic elements in the hippocampus of AD
patients, and the amyloidosis mice experienced greater
synaptic engulfment by microglia compared to wild-type
mice. Animal studies showed that Trem2 deficiency was
linked to reduced microglial phagocytosis and increased
dendritic spine densities and synaptic proteins in the

brains of aged and amyloidosis mice.9,50 Supporting this,
another study found that loss of function in TREM2
markedly reduced synaptic engulfment by microglia in
in vivo and in vitro experiments,8 and TREM2 over-
expression in the hippocampus could also induce synaptic
loss.9 These findings in animal models suggest that
TREM2 signaling plays an active role in microglia-
mediated synaptic removal. Importantly, our results in two
independent cohorts provided further evidence from living
humans by showing positive associations between CSF
sTREM2 and CSF GAP-43 cross-sectionally and longitudi-
nally independent of Aβ PET and CSF p-Tau pathologies,
supporting the opinion on microglia-associated presynaptic
elimination in a TREM2-dependent manner.8,9 Moreover,
it is crucial to note that cortical Aβ deposition significantly
modulated the association between CSF sTREM2 and CSF
GAP-43. Specifically, higher levels of Aβ PET were related
to augmented relationships between CSF sTREM2 and
longitudinal increases in CSF GAP-43, suggesting a
destructive role of Aβ pathology on microglial TREM2
signaling-related presynaptic dysfunction. This was in accor-
dance with a previous study in nonhuman primates show-
ing that administration of oligomeric Aβ could trigger an
increased uptake of the cortical synapses by microglia para-
lleled by neuroinflammation.51

In this study, we systematically investigated the asso-
ciation of CSF microglial biomarkers with Aβ PET, CSF
p-Tau181, and presynaptic loss measured by CSF GAP-43
in a large dataset. The crucial findings were validated in
an independent cohort. However, some caveats should be
addressed when interpreting the current results. First, CSF
sTREM2 and CSF PGRN are only indirect microglial
TREM2 and PGRN signaling measurements. Thus, the
levels of microglial activation cannot be regarded as con-
clusive unless confirmed by autopsy or PET imaging.
Nevertheless, our findings may reflect, at least partly, the
TREM2-related and PGRN-related microglial reactivity,
given that both sTREM2 and PGRN in CSF are primarily
shedding from microglia in the brain.10,15,25 To the best
of our knowledge, this study is the first to explore the
association between biomarker-based evidence of micro-
glial reactivity and presynaptic integrity in living humans.
Therefore, more validations in independent cohorts with
large sample sizes are needed in the future, especially by
using different synaptic biomarkers (ie, postsynaptic pro-
tein neurogranin52 and presynaptic protein SNAP-25,53

whose sample sizes are limited in the ADNI cohort).
Finally, the current study is observational in nature, and
causal associations should not be drawn from our findings.

In conclusion, this study demonstrated that
Aβ pathology may attenuate p-Tau-related increases in
microglial TREM2 and PGRN signaling, which are

10 Volume 00, No. 0

ANNALS of Neurology
 15318249, 0, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/ana.26885 by U
niversity O

f C
alifornia, W

iley O
nline L

ibrary on [04/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



independently linked to GAP-43-related presynaptic loss.
These findings extend the understanding of the association
among primary AD pathology, microglial reactivity, and pre-
synaptic dysfunction in AD and other neurodegenerative dis-
eases, which may have important clinical implications for
developing therapeutic strategies targeting microglial TREM2
to prevent the progression of AD.
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